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CONSERVATIVE METHODS FOR STOCHASTIC DIFFERENTIAL

EQUATIONS WITH A CONSERVED QUANTITY

CHUCHU CHEN, DAVID COHEN, AND JIALIN HONG

Abstract. This paper proposes a novel conservative method for the numerical approximation
of general stochastic differential equations in the Stratonovich sense with a conserved quantity.
We show that the mean-square order of the method is 1 if noises are commutative and that the

weak order is 1 in the general case. Since the proposed method may need the computation of a
deterministic integral, we analyse the effect of the use of quadrature formulas on the convergence
orders. Furthermore, based on the splitting technique of stochastic vector fields, we construct
conservative composition methods with similar orders as the above method. Finally, numerical

experiments are presented to support our theoretical results.

Key words. stochastic differential equations, invariants, conservative methods, stochastic geo-
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1. Introduction

In this paper, we consider general d-dimensional autonomous stochastic differ-
ential equation (SDE) in the Stratonovich sense

(1) dX(t) = f(X(t)) dt+

m∑
r=1

gr(X(t)) ◦ dWr(t), t0 = 0 ≤ t ≤ T, X(0) = X0,

where Wr(t), r = 1, · · · ,m are m independent one-dimensional Brownian motions,
defined on a complete probability space (Ω,F , {Ft}t≥0, P ). The initial value X0

is Ft0 -measurable with E|X0|2 < ∞. Here, f : Rd → Rd and gr : Rd → Rd are
such that the above problem possesses a unique solution. The studies of SDE
(1) have drawn dramatic attentions due to its applications in physics, engineering,
economics, etc., concerning the effects of random-phenomena. Furthermore, we will
assume that equation (1) possesses a scalar conserved quantity I(x), which means
that dI(X(t)) = 0 along the exact solution X(t) of (1), e. g. see [2, 6, 7, 9, 16]
and references therein for the applications and studies of conservative SDEs. Our
aim is to derive and analyse numerical methods for (1) preserving this conserved
quantity.

Finding numerical solutions of stochastic differential equations is an active ongo-
ing research area, see the review paper [4], the monographs [10, 15] and references
therein for instance. Further, it is important to design numerical schemes which
preserve the properties of the original problems as much as possible. References
[1, 5, 11, 13, 14, 19, 22, 23, 26], without being exhaustive, show general improve-
ments of these so-called geometric numerical methods over more traditional numer-
ical methods such as Euler-Maruyama’s method or the Milstein’s method.

Concerning our problem (1) with a conserved quantity, [16] develops a method to
derive conserved quantities from symmetry of SDEs in Stratonovich sense. Further,
[17] proposes an energy-preserving method for stochastic Hamiltonian dynamical
systems and presents the local error order of the method. The recent work [6]
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proposes a new energy-preserving scheme for stochastic Poisson systems with non-
canonical structure matrix and shows that the mean-square convergence order of
the scheme is 1. For general SDEs driven by one-dimensional Brownian motion in
Stratonovich sense, the authors of [9] propose two conservative methods by means of
the skew gradient form of the original SDEs (see below for more details). They also
prove that these two methods are convergent with accuracy 1 in the mean-square
sense. Based on these two last references, we propose new conservative numerical
methods for general stochastic differential equations with a conserved quantity in
the present paper.

Since the problem of computing expectations of functionals of solutions to SDEs
appears in many applications [25], for example: in finance [20], in random mechan-
ics [24], or in bio-chemistry [8]; we will not only derive the mean-square, but also
weak convergence orders of new invariant-preserving numerical methods. Com-
paring our method with the Milstein’s method, we prove that the mean-square
convergence order of our method is 1 under the condition of commutative noise.
Furthermore, without assuming any commutativity condition, we show that the
weak convergence order of our method is 1. Since the proposed method may need
the computation of a deterministic integral, we will also analyse the effect of the
use of quadrature formulas on convergence orders. We will show that if the order
of a quadrature formula is greater than 1, the mean-square and weak orders of our
method remains 1. Based on the splitting technique of stochastic vector fields, we
derive new invariant-preserving composition methods of mean-square order one (in
the commutative case) and weak order one.

This paper is organized as follows. Section 2 presents the skew gradient form of
the problem and derives the proposed invariant-preserving method. Properties of
the numerical method are analyzed in Section 3. The effects of quadrature formulas
on the mean-square and weak convergence orders and on the discrete conserved
quantity are investigated in Section 4. Section 5 deals with the splitting technique
of stochastic vector field. Finally, numerical examples are presented in Section 6 to
support the theoretical analysis of the previous sections.

In the sequel, we will make use of the following notations.

• |x| is the Euclidean norm of a vector x or the induced norm for a matrix x.
• We use superscript indices to denote components of a vector or a matrix.

• Partial derivatives are denoted as ∂i :=
∂

∂xi
and ∂ij :=

∂2

∂xi∂xj
etc.

• Ck
b (Rd1 ,Rd2) is the space of k times continuously differentiable functions

g : Rd1 → Rd2 with uniformly bounded derivatives (up to order ≤ k).
• Ck

P (Rd,R) denotes the space of all k times continuously differentiable func-
tions f : Rd → R with polynomial growth, i. e., there exists a constant
C > 0 and r ∈ N, such that |∂jf(x)| ≤ C(1 + |x|2r) for all x ∈ Rd and any
partial derivative of order j ≤ k.

2. Presentation of the conservative method for skew gradient problems

In this section, we will first present the equivalent skew gradient form of (1)
with a conserved quantity I(x), and then we will define our invariant-preserving
numerical method.

The equivalent skew gradient form of (1) is stated below.

Proposition 1 (See Theorem 2.2 in [9] for a one-dimensional Brownian motion).
The d-dimensional system (1) with a scalar conserved quantity I(x) is equivalent
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to the following skew gradient (SG) form

(2) dX(t) = S(X)∇I(X)dt+
m∑
r=1

Tr(X)∇I(X) ◦ dWr(t),

where S(X), Tr(X) ∈ Rd×d are skew symmetric matrices such that S(X)∇I(X) =
f(X) and Tr(X)∇I(X) = gr(X) for r = 1, · · · ,m.

Note that the proof of the above proposition is similar to the one of Theorem 2.2
in [9]. Further it makes use of constructive techniques. It not only proves the
validity of the proposition, but also presents the construction of the skew symmetric
matrices S(X) and Tr(X). For example, one can take

S(x) =
f(x)a(x)T − a(x)f(x)T

a(x)T∇I(x)
, Tr(x) =

gr(x)b(x)
T − b(x)gr(x)

T

b(x)T∇I(x)
,

where AT denotes the transpose of A. Here a(x), b(x) are arbitrary column vectors
such that a(x)T∇I(x) ̸= 0, b(x)T∇I(x) ̸= 0.

Remark 1. Since we will make use of general theorems ([15, Theorem 2.1, Sect.
2.2.1] or [10, Theorem 14.5.2] for instance) to prove convergence of our numerical
method, we will assume that I, S and Tr (r = 1, · · · ,m) are smooth functions with
globally bounded derivatives up to certain order. Observe however that, in certain
cases, we may get rid off these restrictions thanks to the invariant preservation
property of the numerical method (3) (see [6, Remarks 3.4, 3.5 and Theorem 3.4]
for instance).

We now present the conservative numerical method for (1) studied in this paper.
Let h > 0 be a fixed step size, and consider the numerical method defined by

X̄n+1 = X̄n + hS
(X̄n + X̄n+1

2

) ∫ 1

0

∇I(X̄n + τ(X̄n+1 − X̄n)) dτ

(3)

+
m∑
r=1

∆ŴrTr
(X̄n + X̄n+1

2

) ∫ 1

0

∇I(X̄n + τ(X̄n+1 − X̄n)) dτ,

where ∆Ŵr =
√
hζrh with ζrh being the truncation of a N (0, 1)-distributed random

variable ξr:

ζrh =


ξr, if |ξr| ≤ Ah,

Ah, if ξr > Ah,

−Ah, if ξr < −Ah

with Ah :=
√
2k| ln(h)| for an arbitrary integer k ≥ 0. This choice is motivated by

the fact that standard Gaussian random variables ∆Wr are unbounded for arbitrary
small values of h, see [15] for more details. Taking k = 2, we have the following
properties [13]

E(∆Ŵr)
2ℓ ≤ Khℓ, E(∆Ŵr)

2ℓ+1 = 0, for ℓ ≥ 0,

|E((∆Ŵr)
2 − (∆Wr)

2)| ≤ Kh3, E(|∆Ŵr −∆Wr|2) ≤ Kh3,(4)

E|∆Ŵr∆Ŵs −∆Wr∆Ws|2 ≤ Kh3,

with a generic constant K that does not depend on h. Observe, that here and in the
following the constants K or C may vary from line to line but are independent on

h and n. In fact, it is easy to prove that the integral
∫ 1

0
∇I(X̄n+ τ(X̄n+1− X̄n)) dτ
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in (3) is a discrete gradient, but in general, is not symmetric, see Definition 2.3 in
[9].

To conclude this section, we note that the above conservative method reduces
to the numerical scheme proposed in [6] in the case of stochastic Poisson systems,
i. e., equation (2) with m = 1 and T1(x) = cS(x) with a real constant c.

3. Properties of the conservative method

The conservative method (3) has been designed to preserve the invariant I(x)
exactly. Indeed, one has the following immediate result.

Proposition 2. The numerical method (3) exactly preserves the invariant, i. e.,
I(X̄n) = I(X̄n+1) for all n ≥ 0.

Proof. This is similar to the proof of Proposition 3.1 in [6]: the proof follows from
the definition of (3) and the skew symmetry of the matrices S and Tr. �

If I(x) is of a special form, further interesting properties are enjoyed by the
conservative numerical method (3).

Proposition 3. If I(x) =
1

2
xTCx+ dTx with C being a symmetric matrix and d

being a constant vector, then method (3) reduces to the stochastic midpoint scheme
[13]. Further, it is known that the stochastic midpoint method preserves all quadratic
invariants [1].

Proof. In the case where I(x) =
1

2
xTCx+ dTx we have

∫ 1

0

∇I(X̄n + τ(X̄n+1 − X̄n)) dτ =

∫ 1

0

(
C(X̄n + τ(X̄n+1 − X̄n)) + d

)
dτ

= C
X̄n + X̄n+1

2
+ d

= ∇I(X̄n + X̄n+1

2
).

Substituting this into the method (3) and recalling that S(x)∇I(x) = f(x), Tr(x)∇I(x) =
gr(x), r = 1, · · · ,m, we observe that the proposed method (3) reduces to the sto-
chastic midpoint scheme from [13]. �

We next show the following result:

Proposition 4. If I(x) is separable, i. e. I(x) = I1(x
1)+ I2(x

2)+ · · ·+ Id(xd) with
x = (x1, . . . , xd)T , then the conservative method (3) coincides with the symmetric
discrete gradient method proposed in [9] (for a one-dimensional Brownian motion).

Proof. Since I(x) is separable, we have I1, · · · , Id such that

I(x) = I1(x
1) + I2(x

2) + · · ·+ Id(x
d).
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It then follows that the kth component of
∫ 1

0
∇I(X̄n + τ(X̄n+1 − X̄n)) dτ reads

(∫ 1

0

∇I(X̄n + τ(X̄n+1 − X̄n)) dτ
)k

=

∫ 1

0

∇Ik(X̄k
n + τ(X̄k

n+1 − X̄k
n)) dτ

=

∫ 1

0

1

X̄k
n+1 − X̄k

n

d

dτ
Ik(X̄

k
n + τ(X̄k

n+1 − X̄k
n)) dτ

=
Ik(X̄

k
n+1)− Ik(X̄

k
n)

X̄k
n+1 − X̄k

n

=
(
∇̄I(X̄n, X̄n+1)

)k

,

where ∇̄I(X̄n, X̄n+1) is the symmetric discrete gradient defined in [9]. Inserting
this expression in the definition of the conservative method (3), one notices that
the proposed method reduces to the discrete gradient method from [9] in case of a
separable conserved quantity I(x). �

3.1. Mean-square order. For stochastic Poisson system, i. e., equation (2) with
m = 1, and T1(x) = cS(x) with a real constant c, the authors of [6] show that
the mean-square convergence order of the numerical scheme (3) is 1. For gen-
eral stochastic differential equations with a conserved quantity, as studied in the
present work, we now show that the mean-square convergence order of the conser-
vative method remains 1 under the condition of commutative noise. We recall this
condition for equation (1):

Λigr(x) = Λrgi(x), for i, r = 1, · · · ,m,

with the operator Λi := (gi,
∂
∂x ) =

∑d
j=1 g

j
i

∂
∂xj .

Theorem 1. Consider problem (1) with a scalar invariant I(x) discretised by
the conservative numerical method (3) with step size h. Assume that the matrix-
functions S, Tr ∈ C2

b (Rd,Rd×d), that ∇I satisfies a global Lipschitz condition and
has uniformly bounded first and second derivatives. Assume further that the noises
satisfy the commutative conditions. Then there exists a constant K > 0 (indepen-
dent of n and h) such that the following error estimate holds, for n = 0, 1, · · · , N
with N = [T/h],

(E|X(tn)− X̄n|2)
1
2 ≤ Kh, for all h sufficiently small.

Here, we recall that X(t) denotes the exact solution of (1) and X̄n denotes the
numerical one on the time interval [0, T ]. I. e., the numerical method (3) is of first
order in the mean-square convergence sense.

Proof. The main idea of the proof is to compare our conservative method to Mil-
stein’s method applied to the converted Itô SDE and use Lemma 2.1 in [12] to
ensure that the conservative method has mean-square order of convergence one. In
order to do this, we first rewrite the one-step approximation method (3) (starting
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at x) by

X̄ = x+ hS(
x+ X̄

2
)

∫ 1

0

∇I(x+ τ(X̄ − x)) dτ

(5)

+

m∑
r=1

∆ŴrTr(
x+ X̄

2
)

∫ 1

0

∇I(x+ τ(X̄ − x)) dτ.

Let X̃ be the corresponding one-step approximation of Milstein’s method (starting
at x) applied to (2) (converted to an Itô SDE),

X̃ = x+ hS(x)∇I(x) +
m∑
r=1

∆WrTr(x)∇I(x)

(6)

+
m−1∑
i=1

m∑
r=i+1

Λi(Tr(x)∇I(x))∆Wi∆Wr +
1

2

m∑
r=1

Λr(Tr(x)∇I(x))(∆Wr)
2.

From [15], we know that Milstein’s method is of mean-square order 1 under the
condition of our theorem, in particular, if Xt,x(t+ h) denotes the exact solution of
(2) on [t, t+ h] starting at x, then

|E(X̃−Xt,x(t+h))| ≤ K(1+|x|2)1/2h2, (E|X̃−Xt,x(t+h)|2)1/2 ≤ K(1+|x|2)1/2h 3
2 .

Thus, in order to show that the numerical scheme (3) is of mean-square order 1 as
well, using Lemma 2.1 in [12], we will prove that

|E(X̄ − X̃)| = O(h2), (E|X̄ − X̃|2)1/2 = O(h
3
2 ),

where, here and in the following, the constants in the O(·) notations may depend
on the starting point x for the scheme but are independent of h and n. For any
k = 1, 2, · · · , d, the corresponding component equation of (6) is

X̃k = xk +
d∑

i=1

(Ski∂iI)h+
m∑
r=1

d∑
i=1

(T ki
r ∂iI)∆Wr

+
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)(
d∑

l=1

T jl
r ∂lI)(∆Wr)

2

+

m−1∑
i=1

m∑
r=i+1

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)(

d∑
l=1

T jl
i ∂lI)(∆Wi)(∆Wr).

We next develop an expansion for the kth component equation of (5). By assump-
tions, using deterministic Taylor expansions, there exists 0 < θ < 1 (below θ may
differ from line to line) such that

Ski(
x+ X̄

2
) = Ski(x) +

1

2

d∑
j=1

∂jS
ki(x)∆j +RS ,

where ∆j := X̄j − xj and the remainder term is given by

RS =
1

8

d∑
m,n=1

∂mnS
ki(x+ θ

X̄ − x

2
)∆m∆n.



CONSERVATIVE METHODS FOR SDES 441

For the matrix-functions Tr, we have similar expansions

T ki
r (

x+ X̄

2
) = T ki

r (x) +
1

2

d∑
j=1

∂jT
ki
r (x)∆j +RTr ,

where r = 1, · · · ,m and the remainder term reads

RTr =
1

8

d∑
m,n=1

∂mnT
ki
r (x+ θ

X̄ − x

2
)∆m∆n.

Similarly, the component expansion of ∇I(x+ τ(X̄ − x)) reads

∂iI(x+ τ(X̄ − x)) = ∂iI(x) + τ
d∑

j=1

∂ijI(x)∆
j +RI ,

with RI =
τ2

2

∑d
j,k=1 ∂ijkI(x+ θτ(X̄ − x))∆j∆k.

Substituting these expansions into the kth component equation of (5), we obtain

X̄k = xk +
d∑

i=1

Ski∂iIh+
m∑
r=1

d∑
i=1

T ki
r ∂iI∆Ŵr

(7)

+
1

2

m∑
r=1

d∑
l,j=1

(
∂jT

kl
r ∂lI + T kl

r ∂ljI
)
∆j∆Ŵr +R1,

where

R1 =
d∑

i=1

Ski
(∫ 1

0

∂iI(x+ τ(X̄ − x)) dτ − ∂iI(x)
)
h

+
d∑

i=1

(1
2

d∑
j=1

∂jS
ki∆j +RS

)∫ 1

0

∂iI(x+ τ(X̄ − x)) dτh

+
1

2

m∑
r=1

d∑
i,j=1

∂jT
ki
r ∆j

(∫ 1

0

∂iI(x+ τ(X̄ − x)) dτ − ∂iI(x)
)
∆Ŵr

+
m∑
r=1

d∑
i=1

RTr

∫ 1

0

∂iI(x+ τ(X̄ − x)) dτ∆Ŵr +
m∑
r=1

d∑
i=1

T ki
r

∫ 1

0

RI dτ∆Ŵr.

Since the noises are commutative, i. e., for k = 1, · · · , d and i, r = 1, · · · ,m,

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)(

d∑
l=1

T jl
i ∂lI) =

d∑
l,j=1

(∂jT
kl
i ∂lI + T kl

i ∂ljI)(

d∑
l=1

T jl
r ∂lI),

we have, after rearranging terms in the summations,

1

2

m∑
r=1

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)(
m∑
i=1

d∑
l=1

T jl
i ∂lI∆Ŵi)(∆Ŵr)

=
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)(

d∑
l=1

T jl
r ∂lI)(∆Ŵr)

2

+
m−1∑
i=1

m∑
r=i+1

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)(
d∑

l=1

T jl
i ∂lI)(∆Ŵi)(∆Ŵr).
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Substituting it into (7), we obtain

X̄k = xk +
d∑

i=1

Ski∂iIh+
m∑
r=1

d∑
i=1

T ki
r ∂iI∆Ŵr

+
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)(
d∑

l=1

T jl
r ∂lI)(∆Ŵr)

2

(8)

+

m−1∑
i=1

m∑
r=i+1

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)(

d∑
l=1

T jl
i ∂lI)(∆Ŵi)(∆Ŵr)

+R1 +R2,

where

R2 =
1

2

m∑
r=1

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)
(
∆j −

m∑
i=1

d∑
l=1

T jl
i ∂lI∆Ŵi

)
∆Ŵr.

Under the assumptions that S, Tr ∈ C2
b (Rd,Rd×d), the ones on the invariant I(x),

and due to the properties of ∆Ŵr, see (4), we derive the following estimation from
equation (5)

(E(∆i)2ℓ)
1
2ℓ ≤ (E|∆|2ℓ) 1

2ℓ ≤ Kh
1
2 , ℓ ≥ 1,(9)

where ∆ = (∆i)di=1. Further, we know that (E|R1|2)
1
2 = O(h

3
2 ). These estimations

and equation (7) give us |E(∆i)| = O(h). The estimation |E(R1)| = O(h2) follows
from substituting ∆j into the last three terms of R1 and from the properties of
∆Ŵr in (4). Similarly we get (E|R2|2)

1
2 = O(h

3
2 ) and |E(R2)| = O(h2). We now

compare our conservative method, see also (8), and Milstein’s method

ρk :=X̄k − X̃k

=
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)(
d∑

l=1

T jl
r ∂lI)((∆Ŵr)

2 − (∆Wr)
2)

+
∑
i<r

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)(

d∑
l=1

T jl
i ∂lI)((∆Ŵi)(∆Ŵr)− (∆Wi)(∆Wr))

+
m∑
r=1

d∑
i=1

T ki
r ∂iI(∆Ŵr −∆Wr) +R1 +R2.

And we obtain the estimations

|E(ρ)| = O(h2), E|ρ|2 = O(h3),

with the vector ρ = (ρk)dk=1. Lemma 2.1 in [12] thus implies that the conservative
method (3) is of mean-square order 1 and thus completes the proof. �

Remark 2. In the above proof, we need commutative noises. Without this condi-
tion, the mean-square convergence order of the conservative method (3) is only 1

2 .
However, as we will see next, the commutativity condition is no more needed to get
weak order of convergence 1. It is meaningful to construct high weak order method,
see [1, 15, 10] for instance.
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3.2. Weak order. We will now show that the conservative numerical method (3)
has weak convergence order 1. Before that, we point out that, for sufficiently large
ℓ, E|X̄n|2ℓ exist and are uniformly bounded for all n = 0, 1, · · · , N according to the
proof of Theorem 1 and Lemma 2.2 in [15, Sect. 2.2.1].

Theorem 2. Assume that the functions S, Tr ∈ C4
b (Rd,Rd×d) and ∇I satisfies a

global Lipschitz condition and has uniformly bounded derivatives from first to forth
order. Let further ψ ∈ C4

P (Rd,R). Then the following inequality holds

|Eψ(X(tn))− Eψ(X̄n)| ≤ Kh,

for all n = 0, 1, · · · , N with a positive constant K independent of n and h (small
enough). I. e., the conservative method (3) has order of accuracy 1 in the sense of
weak approximations.

Proof. To show that the weak order of accuracy of our numerical method is p = 1,
we will use the main theorem on convergence of weak approximations [15, Theo-
rem 2.1, Sect. 2.2.1], see also [10, Theorem 14.5.2], and prove the following estimates

(10)
∣∣∣E( s∏

j=1

∆ij −
s∏

j=1

∆̄ij
)∣∣∣ ≤ K(x)hp+1, s = 1, · · · , 2p+ 1,

and

(11) E

2(2p+2)∏
j=1

|∆̄ij | ≤ K(x)h2p+2,

where K(x) is some function with polynomial growth and we use the notations
∆i := Xi − xi and ∆̄i := X̄i − xi with Xi being the ith component of the exact
solution of equation (1) starting from x, and X̄ being its numerical approximation
(given by (3) in our case). From the proof of Theorem 1 and the use of Cauchy-
Schwarz inequality, one easily obtains estimation (11). Below we will show that
(10) holds for p = 1.

The kth component of X(t) satisfies the Itô SDE

dXk =
d∑

i=1

Ski∂iI dt+
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)(
d∑

l=1

T jl
r ∂lI) dt

+
m∑
r=1

d∑
i=1

T ki
r ∂iI dWr(t).

To simplify the notations, we let

ak =
d∑

i=1

Ski∂iI +
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)(
d∑

l=1

T jl
r ∂lI)

and gkr =
∑d

i=1 T
ki
r ∂iI. Then

(12) Xk
t,x(t+ h) = xk +

∫ t+h

t

ak(X(s)) ds+

m∑
r=1

∫ t+h

t

gkr (X(s)) dWr(s).

We now prove (10) for s = 1. From the proof of Theorem 1, we have the expansion
(8) of the conservative method X̄k. Compare it with equation (12), we have

|E(∆k − ∆̄k)| =
∣∣∣E ∫ t+h

t

ak(X(s)) ds− ak(x)h− E(R1 +R2)− E(R3)
∣∣∣,
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where

E(R3) =
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)(

d∑
l=1

T jl
r ∂lI)E[(∆Ŵr)

2 − (∆Wr)
2].

We know that (recalling that we use truncated random variables, see Section 2)

|E(R1 +R2)| ≤ Kh2, |E(R3)| ≤ Kh3.

Hence

|E(∆k − ∆̄k)| ≤
∣∣∣E ∫ t+h

t

ak(X(s)) ds− ak(x)h
∣∣∣+Kh2

≤ Kh2 +

∫ t+h

t

d∑
n1=1

∂ak(x)

∂xn1

|E∆n1(s)|ds

+

∫ t+h

t

d∑
n1,n2=1

∣∣∣E ∂2ak(xθ)

∂xn1∂xn2

∆n1(s)∆n2(s)
∣∣∣ ds

≤ Kh2.

This proves inequality (10) for s = 1. We next show that (10) holds for s = 2. By
definition of ∆j and the use of Itô’s isometry, we have

E(∆i1∆i2) = E
{(∫ t+h

t

ai1(X(s)) ds+

m∑
r=1

∫ t+h

t

gi1r (X(s)) dWr(s)
)

(∫ t+h

t

ai2(X(s)) ds+
m∑
r=1

∫ t+h

t

gi2r (X(s)) dWr(s)
)}

= E

∫ t+h

t

ai1(X(s)) ds

∫ t+h

t

ai2(X(s)) ds

+
m∑
r=1

E

∫ t+h

t

ai1(X(s)) ds

∫ t+h

t

gi2r (X(s)) dWr(s)

+
m∑
r=1

E

∫ t+h

t

gi1r (X(s)) dWr(s)

∫ t+h

t

ai2(X(s)) ds

+
m∑
r=1

E

∫ t+h

t

gi1r (X(s))gi2r (X(s)) ds.

By definition of ∆̄j , we get

E(∆̄i1∆̄i2) = ai1(x)ai2(x)h2 +

m∑
r=1

gi1r (x)gi2r (x)h+ R̂

with |E(R̂)| ≤ Kh2.
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Since∣∣∣E ∫ t+h

t

ai1(X(s)) ds

∫ t+h

t

gi2r (X(s)) dWr(s)
∣∣∣

=
∣∣∣E(∫ t+h

t

(ai1(X(s))− ai1(x)) ds+ ai1(x)h
)

(∫ t+h

t

(gi2r (X(s))− gi2r (x)) dWr(s) + gi2r (x)∆Wr

)∣∣∣
=

∣∣∣E ∫ t+h

t

(ai1(X(s))− ai1(x)) ds

∫ t+h

t

(gi2r (X(s))− gi2r (x)) dWr(s)

+ gi2r (x)E∆Wr

∫ t+h

t

(ai1(X(s))− ai1(x)) ds
∣∣∣

≤ Kh2

and, by Taylor expansions,∣∣∣E ∫ t+h

t

gi1r (X(s))gi2r (X(s)) ds− gi1r (x)gi2r (x)h
∣∣∣ ≤ Kh2,

we obtain that

|E(∆i1∆i2 − ∆̄i1∆̄i2)| = O(h2).

We finally prove that inequality (10) holds for s = 3. As above, if we write down
the expressions for E(∆i1∆i2∆i3) and E(∆̄i1∆̄i2∆̄i3), we will observe that we only
have to estimate the following term:∣∣∣E ∫ t+h

t

gi1r1(X(s)) dWr1

∫ t+h

t

gi2r2(X(s)) dWr2

∫ t+h

t

gi3r3(X(s)) dWr3

∣∣∣
=

∣∣∣E(∫ t+h

t

(gi1r1(X(s))− gi1r1(x)) dWr1(s) + gi1r1(x)∆Wr1

)
(∫ t+h

t

(gi2r2(X(s))− gi2r2(x)) dWr2(s) + gi2r2(x)∆Wr2

)
(∫ t+h

t

(gi3r3(X(s))− gi3r3(x)) dWr3(s) + gi3r3(x)∆Wr3

)∣∣∣
≤ Kh2.

Therefore,

|E(∆i1∆i2∆i3 − ∆̄i1∆̄i2∆̄i3)| = O(h2).

Thus we complete the proof of this theorem. �

4. Quadrature rule

In this section, we will investigate the use of a quadrature formula (ci, bi)
D
i=1∫ 1

0

f(τ) dτ ≈
D∑
i=1

bif(ci)
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to approximate the integral presented in the conservative numerical method (3). In
this case, we obtain the following numerical approximation

X̂n+1 = X̂n + hS(
X̂n + X̂n+1

2
)

D∑
i=1

bi∇I(X̂n + ci(X̂n+1 − X̂n))

(13)

+
m∑
r=1

∆ŴrTr(
X̂n + X̂n+1

2
)

D∑
i=1

bi∇I(X̂n + ci(X̂n+1 − X̂n)).

Second moments of such numerical approximations are seen to be bounded as this
was done in the previous section.

We first investigate the effect of the use of a quadrature formula on the conser-
vation of I(x).

Proposition 5. The numerical method (13) exactly preserves polynomial conserved
quantity I(x) of degree ν ≤ q, where q is the order of the quadrature formula. On
the other hand, in the case where S, Tr ∈ Cb(Rd,Rd×d) and ∇I ∈ Cq

b (Rd,Rd), one

has E(I(X̂n+1)− I(X̂n))
2 = O(hq+1).

Proof. The proof of the first statement results from the definition of the order of a
quadrature formula.

On the other hand, from equation (13), we know that

(14) E|X̂n+1 − X̂n|2ℓ = O(hℓ).

The expression for the error in the conserved quantity reads

I(X̂n+1)− I(X̂n) =
(
δI

)T

S(
X̂n + X̂n+1

2
)
( D∑

i=1

bi∇I(σ(cih))
)
h

+

m∑
r=1

(
δI

)T

Tr(
X̂n + X̂n+1

2
)
( D∑

i=1

bi∇I(σ(cih))
)
∆Ŵr,

where we use the notations δI =

∫ 1

0

∇I(σ(τh)) dτ −
D∑
i=1

bi∇I(σ(cih)) and σ(τh) =

X̂n + τ(X̂n+1 − X̂n).
Since the order of the first term is higher than the second one, we only need to

estimate the second term. Using S, Tr ∈ Cb(Rd,Rd×d) and I ∈ Cq+1
b (Rd,R), the

second statement follows from the following estimate

E
[(
δI
)T

Tr(
X̂n + X̂n+1

2
)
( D∑

i=1

bi∇I(σ(cih))
)
∆Ŵr

]2
≤ KhE|δI|2 ≤ Kh

(
E
(
|∂

q+1I(θ)

∂xq+1
|2|X̂n+1 − X̂n|2q

))
≤ Kh

(
E|X̂n+1 − X̂n|2q

)
≤ Khq+1.

Here, θ denotes a real number appearing in the expression of the remainder of the
Taylor expansions up to order q of ∇I and the last inequality follows from the
estimations (14). �

To investigate the effect of the use of a quadrature formula on the convergence
orders of the scheme, we start with the case where S and Tr are constant skew
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symmetric matrices. Then the numerical approximation (13) reads

X̂n+1 = X̂n + h
D∑
i=1

S∇I(X̂n + ci(X̂n+1 − X̂n))bi

(15)

+

m∑
r=1

∆Ŵr

D∑
i=1

Tr∇I(X̂n + ci(X̂n+1 − X̂n))bi.

Denote Yi = X̂n + ci(X̂n+1 − X̂n), then we have

X̂n+1 = X̂n + h

D∑
i=1

S∇I(Yi)bi +
m∑
r=1

∆Ŵr

D∑
i=1

Tr∇I(Yi)bi

= X̂n + h

D∑
i=1

f(Yi)bi +

m∑
r=1

∆Ŵr

D∑
i=1

gr(Yi)bi

and

Yi = X̂n + ci

[
h

D∑
j=1

f(Yj)bj +
m∑
r=1

∆Ŵr

D∑
j=1

gr(Yj)bj

]

= X̂n + h

D∑
j=1

cibjf(Yj) +

m∑
r=1

∆Ŵr

D∑
j=1

cibjgr(Yj).

This is nothing but an implicitD-stage stochastic Runge-Kutta method with Butcher
tableau

c cbT · · · cbT

bT · · · bT︸ ︷︷ ︸
m times

Using now a quadrature formula (ci, bi)
D
i=1 of order bigger than 1, we have

1 =

∫ 1

0

1 dτ =

D∑
i=1

bi and
1

2
=

∫ 1

0

τ dτ =

D∑
i=1

cibi.

This implies that the mean-square order of the method (15) is 1 (in the commutative
case) using results from [3] and the weak order is also 1 using results from [21].

We next present the result for non-constant matrices S(x) and Tr(x).

Theorem 3. Let q be the order of the quadrature formula (ci, bi)
D
i=1. Under the

condition of Theorem 1, if q ≥ 2 then the method (13) is of order 1 in the mean-
square convergence sense.

Proof. We want to compare the method (13) with the conservative method (3).
The kth component of the one-step numerical method (13) reads

X̂k = xk + h
d∑

i=1

Ski(
x+ X̂

2
)

D∑
θ=1

bθ∂iI(x+ cθ(X̂ − x))

+

m∑
r=1

d∑
i=1

∆ŴrT
ki
r (

x+ X̂

2
)

D∑
θ=1

bθ∂iI(x+ cθ(X̂ − x)).
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We next expand Ski(
x+ X̂

2
), T ki

r (
x+ X̂

2
) and ∂iI(x+ cθ(X̂ − x)) in Taylor series.

For

D∑
θ=1

bθ = 1 and

D∑
θ=1

bθcθ =
1

2
, we have

X̂k = xk +
d∑

i=1

Ski∂iIh+
m∑
r=1

d∑
i=1

T ki
r ∂iI∆Ŵr

+
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)∆̂
j∆Ŵr + R̂1,

where

R̂1 = h

d∑
i=1

(1
2

d∑
j=1

∂jS
ki(x)∆̂j +RS

)
(

D∑
θ=1

bθ∂iI(x+ cθ(X̂ − x)))

+ h
d∑

i=1

Ski(x)
( D∑

θ=1

bθ∂iI(x+ cθ(X̂ − x))− ∂iI(x)
)

+

m∑
r=1

d∑
i,j,l=1

∆Ŵr

(
T ki
r (x) +

1

2

d∑
j=1

∂jT
ki
r (x)∆̂j

)1
2

D∑
θ=1

bθc
2
θ∂ijlI(x+ ξcθ(X̂ − x))∆̂j∆̂l

+
m∑
r=1

d∑
i,j,l=1

1

4
∆Ŵr∂jT

ki
r (x)∂ilI(x)∆̂

j∆̂l + h
m∑
r=1

d∑
i=1

RS(
D∑

θ=1

bθ∂iI(x+ cθ(X̂ − x))).

Similar as in the proof of Theorem 1, we define R̂2 as

R̂2 =
1

2

m∑
r=1

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)
(
∆̂j −

m∑
i=1

d∑
l=1

T jl
i ∂lI∆Ŵi

)
∆Ŵr.

It then follows that

X̂k = xk +
d∑

i=1

Ski∂iIh+
m∑
r=1

d∑
i=1

T ki∂iI∆Ŵr

+
1

2

m∑
r=1

d∑
i,j=1

(∂jT
ki
r ∂iI + T ki

r ∂ijI)(
d∑

l=1

T jl
r ∂lI)(∆Ŵr)

2

+
m−1∑
i=1

m∑
r=i+1

d∑
l,j=1

(∂jT
kl
r ∂lI + T kl

r ∂ljI)(
d∑

l=1

T jl
i ∂lI)(∆Ŵi)(∆Ŵr)

+ R̂1 + R̂2,

where |E(R̂1+R̂2)| = O(h2), (E|R̂1+R̂2|2)
1
2 = O(h

3
2 ). Comparing the method (13)

with the conservative method (3), one concludes that the mean-square convergence
order of the numerical approximation (13) is 1. �

The following result can be proved using similar techniques as in the proof of
Theorem 2.

Theorem 4. Let q be the order of the given quadrature formula (ci, bi)
D
i=1. Assume

that functions S, Tr and I satisfy the assumptions in Theorem 2. If q ≥ 2, then for
all n = 0, 1, · · · , N and for small enough h, one has

|Eϕ(X(tn))− Eϕ(X̂n)| ≤ Kh, for ϕ ∈ C4
P (Rd,R),
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with a positive constant K independent of h and n. I. e., the method (13) has order
of accuracy 1 in the sense of weak approximations.

5. Splitting approach

Let us begin by recalling the SG formulation of our problem

(16) dX(t) = S(X)∇I(X) dt+
m∑
r=1

Tr(X)∇I(X) ◦ dWr(t),

where S(X) and Tr(X) are skew symmetric matrices. The purpose of this section
is to derive new numerical methods for the above problem while preserving the
conserved quantity I(x) on the basis of splitting techniques, see also the works
[9, 11, 18] for similar ideas.

Let us first rewrite system (16) as

dX(t) = V0(X) dt+
m∑
r=1

Vr(X) ◦ dWr(t),

where the vector fields V0 and Vr are defined by

V0 =

d∑
i=1

(S∇I)i∂i and Vr =

d∑
i=1

(Tr∇I)i∂i, r = 1, · · · ,m.

Let Γ be a set of multi-indices α: Γ = {α = (α1, α2, · · · , αℓ) ∈ Nℓ
0}. We denote by

|Γ| the number of elements of the set Γ. We next split the above vector fields as

V0 =
∑
α∈Γ

V α
0 and Vr =

∑
α∈Γ

V α
r , r = 1, · · · ,m,

such that there exist skew-symmetric matrices Sα, Tα
r satisfying V α

0 (X) = Sα(X)∇I(X)
and V α

r (X) = Tα
r (X)∇I(X) for r = 1, · · · ,m.

The original system can then be divided into |Γ| subsystems: ∀α ∈ Γ

dX[α] = V α
0 (X[α]) dt+

m∑
r=1

V α
r (X[α]) ◦ dWr(t)

(17)

= (Sα∇I)(X[α]) dt+

m∑
r=1

(Tα
r ∇I)(X[α]) ◦ dWr(t).

It is thus natural to apply the conservative method (3) to each subsystems. Denote
by X̄[α](λ, x) := X̄[α](λ) ◦ x, α ∈ Γ, λ = 1 or 1

2 the corresponding one-step or

half-step numerical approximation to (17). We further define Ȳt,x(t+ h) by

Ȳt,x(t+ h) = X̄[α1](
1

2
) ◦ X̄[α2](

1

2
) ◦ · · · ◦ X̄[α|Γ|](1) ◦ · · · ◦ X̄[α1](

1

2
) ◦ x.

Accordingly, using the above one-step numerical approximation, we recurrently
construct the composition scheme Ȳn, n = 0, 1, · · · , N , by

(18) Ȳn+1 = Ȳtn,Ȳn
(tn + h), Ȳ0 = X0.

Now, we introduce some notations and present a lemma, which lead to the con-
clusion that the above composition scheme is of weak order 1 and of mean-square
order 1 in the case of commutative noise. Denote ϕ[α](λ, x̃) := ϕ[α](λ) ◦ x̃, α ∈ Γ,

λ = 1 or 1
2 , the numerical approximation is defined by

ϕ[α](λ, x̃) = exp(λhV α
0 + λ

m∑
r=1

∆ŴrV
α
r )x̃, λ = 1 or

1

2
.
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Accordingly, let Zt,x(t + h) be another one-step numerical approximation to the
exact solution of (16) on [t, t+ h], which is defined by

Zt,x(t+ h) = ϕ[α1](
1

2
) ◦ ϕ[α2](

1

2
) ◦ · · · ◦ ϕ[α|Γ|](1) ◦ · · · ◦ ϕ[α1](

1

2
) ◦ x.

Using our previous results on mean-square and weak convergence orders, the fol-
lowing results can be proved using similar ideas as in the proof of [9, Lemma 3.2].

Lemma 1. Assume that Milstein’s method converges with mean-square order 1
when applied to (17). We have the following estimates for the one-step approxima-
tion Zt,x(t+ h):

(i) Under the condition of Theorem 1, we have

|E(Xt,x(t+ h)− Zt,x(t+ h))| = O(h2),

(E|Xt,x(t+ h)− Zt,x(t+ h)|2) 1
2 = O(h

3
2 ).

(ii) Under the condition of Theorem 2, for s = 1, 2, 3, we have

|E
( s∏

j=1

(Xt,x(t+ h)− x)ij −
s∏

j=1

(Zt,x(t+ h)− x)ij
)
| = O(h2).

The above result permits us to show the next theorem.

Theorem 5. Assume that each subsystem (17) has commutative noise so that
Milstein’s method converges with mean-square order 1. The composition method
(18) has the following properties

(i) It preserves exactly the scalar invariant I(x).
(ii) Under the conditions of Theorem 1, it has mean-square order of convergence

1.
(iii) Under the conditions of Theorem 2, it is of weak order 1.

Proof. The first point is a direct consequence from the skew-symmetry of the ma-
trices Sα and Tα

r and the result from Section 3.
For the orders of convergence, we let e1 = Xt,x(t + h) − Zt,x(t + h) and e2 =

Zt,x(t+h)−Yt,x(t+h), then e := e1+ e2 = Xt,x(t+h)−Yt,x(t+h) is the one-step
approximation error of Yt,x(t+ h). Corresponding to the expressions of Yt,x(t+ h)
and Zt,x(t+ h), we let

x1 = x, x̃1 = x,

x2 = X̄[α1](
1

2
) ◦ x = X̄[α1](

1

2
, x1), x̃2 = ϕ[α1](

1

2
) ◦ x = ϕ[α1](

1

2
, x̃1),

x3 = X̄[α2](
1

2
) ◦ X̄[α1](

1

2
) ◦ x = X̄[α2](

1

2
, x2),

x̃3 = ϕ[α2](
1

2
) ◦ ϕ[α1](

1

2
) ◦ x = ϕ[α2](

1

2
, x̃2),

...

x|Γ| = X̄[α1](
1

2
) ◦ X̄[α2](

1

2
) · · · X̄[α|Γ|](1) · · · X̄[α1](

1

2
) ◦ x = X̄[α1](

1

2
, x|Γ|−1),

x̃|Γ| = ϕ[α1](
1

2
) ◦ ϕ[α2](

1

2
) · · ·ϕ[α|Γ|](1) · · ·ϕ[α1](

1

2
) ◦ x = ϕ[α1](

1

2
, x|Γ|−1),

where x|Γ| = Yt,x(t+ h), x̃|Γ| = Zt,x(t+ h).

(ii) From Lemma 1, we know that |Ee1| = O(h2) and (E|e1|2)
1
2 = O(h

3
2 ).

Next we estimate e2 by induction on the index of the sequence xk − x̃k.
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We recall that X̄[α](λ, x) denotes the numerical solution to the subsystem
(17) given by the method (3). From the mean-square convergence analysis
in Theorem 1 and comparing with Milstein’s method, we know that

(19) X̄[α](λ, x) = Xmil
[α] (λ, x) +R[α]

with |ER[α]| = O(h2) and (E|R[α]|2)
1
2 = O(h

3
2 ). Here the expression of

Xmil
[α] (λ, x) reads

Xmil
[α] (λ, x) = x+ λh(Sα∇I)(x) +

m∑
r=1

λ∆Wr(T
α
r ∇I)(x)

+
λ2

2

m∑
i=1

m∑
r=1

Λi(T
α
r ∇I)(x)∆Wi∆Wr.

On the other hand, from the definition of ϕ[α](λ, x), it’s not difficult to
show that

(20) ϕ[α](λ, x̃) = Xmil
[α] (λ, x̃) +Q[α]

with |EQ[α]| = O(h2) and (E|Q[α]|2)
1
2 = O(h

3
2 ).

We can now start the proof by induction. For the case k = 1: Since
x1 = x̃1, one has

|E(x2 − x̃2)| = O(h2), (E|x2 − x̃2|2)
1
2 = O(h

3
2 ).

Suppose now that |E(xk− x̃k)| = O(h2) and (E|xk− x̃k|2)
1
2 = O(h

3
2 ). The

estimates

|E(xk+1 − x̃k+1)| = O(h2), (E|xk+1 − x̃k+1|2)
1
2 = O(h

3
2 ),

follow from equations (19)-(20). This finally shows that |Ee2| = O(h2) and

(E|e2|2)
1
2 = O(h

3
2 ). The triangle inequality gives

|Ee| = O(h2), (E|e|2) 1
2 = O(h

3
2 ),

which show that the composition method (18) is of mean-square order 1.
(iii) To prove the weak order of convergence of the composition method, we

shall show that, for s = 1, 2, 3,

|E
( s∏

j=1

(Yt,x(t+ h)− x)ij −
s∏

j=1

(Zt,x(t+ h)− x)ij
)
| = O(h2).

This is again completed by induction. The above estimates are satisfied for
k = 1. Suppose now that the following estimates hold at the stage k,

|E
( s∏

j=1

(xk − x)ij −
s∏

j=1

(x̃k − x)ij
)
| = O(h2), s = 1, 2, 3.

Next we show that they also hold at the stage k+1. For ease of presentation,
we only give details for the case s = 1. The proofs for s = 2, 3 are similar.
From (19) and (20), we have

(xk+1 − x)i1 − (x̃k+1 − x)i1 =
(
(Xmil

[α] (λ, xk)− xk)
i1 − (Xmil

[α] (λ, x̃k)− x̃k)
i1
)

+
(
(xk − x)i1 − (x̃k − x)i1

)
+Ri1

[α] +Qi1
[α].
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Thus from the expression of Xmil
[α] and our assumptions, we obtain∣∣∣E(

(xk+1 − x)i1 − (x̃k+1 − x)i1
)∣∣∣ = O(h2).

A recurrence thus shows the estimates, for s = 1, 2, 3,

|E
( s∏

j=1

(Yt,x(t+ h)− x)ij −
s∏

j=1

(Zt,x(t+ h)− x)ij
)
| = O(h2),

which, using Lemma 1, shows that the composition method (18) has weak
order 1 of convergence.

�

As before, one can show that if the numerical method (13) is used in the com-
position method, i. e. a quadrature formula of order ≥ 2 is employed, then the
mean-square as well as the weak orders remain the same.

6. Numerical experiments

In this section, we present numerical experiments to support and supplement
the above theoretical results.

6.1. Experiment 1. Let us first consider a problem satisfying the hypothesis of
Theorems 1 and 2: a stochastic perturbation of a mathematical pendulum

d

(
p
q

)
=

(
0 −1
1 0

)(
p

sin(q)

)
dt+

(
0 − cos(q)

cos(q) 0

)(
p

sin(q)

)(
c1 ◦ dW1(t) + c2 ◦ dW2(t)

)
with initial values p(0) = 0.2 and q(0) = 1, W1(t) andW2(t) being two independent
Wiener processes. The energy I(p, q) = 1

2p
2−cos(q) is an invariant of this problem.
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Figure 1. Stochastic pendulum with c1 = 1 and c2 = 0.5. Left:
Mean-square order, Right: Weak order. Endpoint errors versus
decreasing step sizes h in log-log scale. The reference lines have
slope 1.

Figure 1 displays the convergence order in both mean-square and weak sense.
From Theorems 1 and 2, we know that the conservative method (3) is of order 1
in the mean-square, resp. weak sense for this stochastic mathematical pendulum
problem. The errors are computed at the endpoint TN = 1, the reference solution
is computed using the step size hexact = 2−14 and the expectation is realised using
the average of 1000 independent paths. We can observe from Figure 1 (left) a
mean-square order of convergence one for the conservative method (3). The right
picture shows the convergence order of |E

(
ψ(p(TN ), q(TN ))−ψ(pN , qN )

)
| with the
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function ψ(p, q) = sin(p) + q2. The reference line has slope 1, and we observe that
the convergence orders are consistent with our theoretical results.

6.2. Experiment 2. We are also interested in the following example, whose co-
efficients do not satisfy the hypotheses of our main theorems. However, numerical
results show that the convergence orders still coincide with our theoretical asser-
tions. We may say that our theory suits for a broader class of problems than we
claimed, and the study for the optimal assumptions is an open problem. In order
to illustrate this, we consider the cyclic Lotka-Volterra system (with commutative
noise) [16]

d

x1x2
x3

 =

x1(x3 − x2)
x2(x1 − x3)
x3(x2 − x1)

 dt+

 x1

x2

−2x3

 ◦ dW1 +

 x1

−2x2

x3

 ◦ dW2 +

−2x1

x2

x3

 ◦ dW3.

This problem has the conserved quantity I(x) = x1x2x3 and possesses the following
skew gradient form (2)

d

x1x2
x3

 =

 0 1 −1
−1 0 1
1 −1 0

∇I(x) dt+


0 1

2x3
1

2x2

− 1
2x3 0 3

2x1

− 1
2x2 − 3

2x1 0

∇I(x) ◦ dW1

+


0 1

2x3
1

2x2

− 1
2x3 0 − 3

2x1

− 1
2x2

3
2x1 0

∇I(x) ◦ dW2 +


0 − 1

2x3 − 1
2x2

1
2x3 0 3

2x1

1
2x2 − 3

2x1 0

∇I(x) ◦ dW3.

We will now numerically integrate this problem on the interval [0, 1] using the initial
values x0 = (0.01, 0.01, 0.01)T .

From Theorems 1 and 2, we know that the conservative scheme (3) is of order 1 in
the mean-square, resp. weak sense. Aiming at verifying these convergence orders,
we compute the errors at the endpoint TN = 1, the expectation is realized using the
average of 1000 independent paths. The left part of Figure 2 displays the mean-

square errors. The lines with ∗ represent the relative errors
(E|y(TN )− yN |2)1/2

(E|y(TN )|2)1/2
with y being x1, x2, x3 or x. The right part of Figure 2 displays the weak errors.

The lines with ∗ represents the relative errors
|E(ψ(y(TN ))− ψ(yN ))|

|Eψ(y(TN ))|
with the

function ψ(x) being x1x2, x2x3, (x1)2 or |x|2. The reference solution y(TN ) is
computed using the stochastic midpoint scheme with stepsize h = 2−14 and the
numerical solutions yN are computed using method (3). We observe the desired
convergence orders for the conservative scheme (3).

We next repeat the same numerical experiments using the numerical method
(13) with the classical midpoint rule. We obtain similar plots as in the above
experiments thus confirming the convergence results from Theorems 3 and 4. The
plots are however not presented.

We finally apply a composition scheme to the cyclic Lotka-Volterra system in
order to verify the conclusions of Theorem 5. To do this, we choose the set Γ =
{12, 13, 23} and consider V ij

0 = Sij∂jI∂i−Sji∂iI∂j and V
ij
r = T ij

r ∂jI∂i−T ji
r ∂iI∂j

for α = ij ∈ Γ. For the above systems, the composition method (18) reads

Yn+1 = X̄[12](
1

2
) ◦ X̄[13](

1

2
) ◦ X̄[23](1) ◦ X̄[13](

1

2
) ◦ X̄[12](

1

2
) ◦ Yn.
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Figure 2. (Conservative scheme (3). Left: Mean-square order,
Right: Weak order) Endpoint errors versus decreasing step sizes
h in log-log scale for the stochastic cyclic Lotka-Volterra system.
The reference lines have slope 1.
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Figure 3. (Composition method (18). Left: Mean-square order,
Right: Weak order) Endpoint errors versus decreasing step sizes
h in log-log scale for the stochastic cyclic Lotka-Volterra system.
The reference lines have slopes 1.

The left part of Figure 3 presents the mean-square errors. The lines with ∗

represents the values of
(E|y(TN )− yN |2)1/2

(E|y(TN )|2)1/2
with y being x1, x2, x3 or x. The

right part of Figure 3 presents the weak errors. The lines with ∗ represents the

values of
|E(ψ(y(TN ))− ψ(yN ))|

|Eψ(y(TN ))|
with the function ψ(x) being x1x2, x2x3, (x1)2

or |x|2. Again, the correct convergence orders are observed.

7. Conclusion

Based on the energy-preserving method for stochastic Poisson system [6] and the
equivalent skew gradient system formulation of the original system [9], we present
a new invariant-preserving method for general stochastic differential equations in
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the Stratonovich sense with a conserved quantity. We show that the invariant-
preserving method converges with accuracy order 1 for commutative noise in mean-
square sense. In the commutative as well as non-commutative case, the weak con-
vergence order of the proposed method is 1. Influences of the usage of a quadrature
formula on the orders of convergence are also investigated. Further, a conservative
composition method is studied: mean-square convergence order 1 for commutative
noise and weak convergence order 1 are obtained. Finally, numerical experiments
are presented to verify and extend our theoretical results. We will study multiple
invariants-preserving methods for stochastic differential equations in a future work.
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[2] J.-M. Bismut. Mécanique Aléatoire, volume 866. Springer-Verlag, 1981.

[3] K. Burrage and P. M. Burrage. Order conditions of stochastic Runge-Kutta methods by B-
series. SIAM J. Numer. Anal., 38, 1626–1646 (2000).

[4] K. Burrage, P. M. Burrage, and T. Tian. Numerical methods for strong solutions of stochastic
differential equations: an overview. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460,

373–402 (2004).Stochastic analysis with applications to mathematical finance.
[5] D. Cohen. On the numerical discretisation of stochastic oscillators. Math. Comp. Simul., 82,
1478–1495 (2012).

[6] D. Cohen and G Dujardin. Energy-preserving integrators for stochastic Poisson systems. Ac-

cepted for publication in Commun. Math. Sci., 2013.
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